home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Group 42-Sells Out! - The Information Archive
/
Group 42 Sells Out (Group 42) (1996).iso
/
crypto
/
polygona.txt
< prev
next >
Wrap
Text File
|
1995-11-30
|
8KB
|
161 lines
THE CRYPTOGRAPHIC USES OF POLYGONAL SEQUENCES
By C. David Colston
INTRODUCTION
Polygonal sequences are a series of numbers that are generated by
offset addition to the previous members of the sequence. The lowest
order of these sequences (other than sequence zero or 1, 2, 3, 4 ,5...
etc.) is the triangular sequence. It is created by taking the starting
number 1 and offset of 1, constantly adding 1 to the offset, and
summing the result. 1 + 2 + 3 + 4... are added, resulting in the
numbers 1, 3, 6, 10...
The next sequence is the square sequence in which offset is
increase by two each time, 1 + 3 + 5 + 7... This results in the
numbers 1, 4, 9, 16... The third sequence (a pentagon) increases the
offset by three each time 1 + 4 + 7 + 10 ... and it results in the
numbers 1, 5, 12, 22... These sequences are called polygonal because
the resulting numbers can be ordered into rigid geometric shapes.
Examples:
1 1 4 9 16
2 3 (Triangle) 2 3 8 15 (Square)
4 5 6 5 6 7 14
7 8 9 10 10 11 12 13
CALCULATION OF POLYGONAL NUMBERS
Because offset counting and addition is a cumbersome process it
is helpful to note that any member (M) of a given polygonal sequence
(PS) may be calculated by the following formula:
(M X M + M)/2 + (PS-1) X ((M-1) X (M-1) + (M-1))/2
It is also helpful to note that (PS + 2) is the number of sides in the
resulting polygonal sequence.
The formula resolves as follows for the first four sequences:
Triangle: (M X M + M)/2
Square: M X M
Pentagon: (3 X M X M - M)/2
Hexagon: 2 X M X M - M
THE MODULAR RESIDUE OF POLYGONAL NUMBERS
Polygonal sequences have ordered properties modulo a prime
number. On the next page is a complete set of the modular residue of
the first 23 polygonal sequences modulo the prime 23. The horizontal
columns are, from left to right, the sequence members from 1 to 23.
The rows from top to bottom are the polygonal sequences from 1 to 23
and are numbered from 1 to 23 accordingly.
______________________________________________________________________
Page 2
PS#|
---+------------------------------------------------------------------
1 |1| 3| 6|10|15|21| 5|13|22| 9|20| 9|22|13| 5|21|15|10| 6| 3| 1| 0|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
2 |1| 4| 9|16| 2|13| 3|18|12| 8| 6| 6| 8|12|18| 3|13| 2|16| 9| 4| 1|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
3 |1| 5|12|22|12| 5| 1| 0| 2| 7|15| 3|17|11| 8| 8|11|17| 3|15| 7| 2|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
4 |1| 6|15| 5|22|20|22| 5|15| 6| 1| 0| 3|10|21|13| 9| 9|13|21|10| 3|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
5 |1| 7|18|11| 9|12|20|10| 5| 5|10|20|12| 9|11|18| 7| 1| 0| 4|13| 4|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
6 |1| 8|21|17|19| 4|18|15|18| 4|19|17|21| 8| 1| 0| 5|16|10|10|16| 5|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
7 |1| 9| 1| 0| 6|19|16|20| 8| 3| 5|14| 7| 7|14| 5| 3| 8|20|16|19| 6|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
8 |1|10| 4| 6|16|11|14| 2|21| 2|14|11|16| 6| 4|10| 1| 0| 7|22|22| 7|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
9 |1|11| 7|12| 3| 3|12| 7|11| 1| 0| 8| 2| 5|17|15|22|15|17| 5| 2| 8|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
10 |1|12|10|18|13|18|10|12| 1| 0| 9| 5|11| 4| 7|20|20| 7| 4|11| 5| 9|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
11 |1|13|13| 1| 0|10| 8|17|14|22|18| 2|20| 3|20| 2|18|22|14|17| 8|10|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
12 |1|14|16| 7|10| 2| 6|22| 4|21| 4|22| 6| 2|10| 7|16|14| 1| 0|11|11|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
13 |1|15|19|13|20|17| 4| 4|17|20|13|19|15| 1| 0|12|14| 6|11| 6|14|12|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
14 |1|16|22|19| 7| 9| 2| 9| 7|19|22|16| 1| 0|13|17|12|21|21|12|17|13|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
15 |1|17| 2| 2|17| 1| 0|14|20|18| 8|13|10|22| 3|22|10|13| 8|18|20|14|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
16 |1|18| 5| 8| 4|16|21|19|10|17|17|10|19|21|16| 4| 8| 5|18| 1| 0|15|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
17 |1|19| 8|14|14| 8|19| 1| 0|16| 3| 7| 5|20| 6| 9| 6|20| 5| 7| 3|16|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
18 |1|20|11|20| 1| 0|17| 6|13|15|12| 4|14|19|19|14| 4|12|15|13| 6|17|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
19 |1|21|14| 3|11|15|15|11| 3|14|21| 1| 0|18| 9|19| 2| 4| 2|19| 9|18|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
20 |1|22|17| 9|21| 7|13|16|16|13| 7|21| 9|17|22| 1| 0|19|12| 2|12|19|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
21 |1| 0|20|15| 8|22|11|21| 6|12|16|18|18|16|12| 6|21|11|22| 8|15|20|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
22 |1| 1| 0|21|18|14| 9| 3|19|11| 2|15| 4|15| 2|11|19| 3| 9|14|18|21|0
---+-+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+-
23 |1| 2| 3| 4| 5| 6| 7| 8| 9|10|11|12|13|14|15|16|17|18|19|20|21|22|0
----------------------------------------------------------------------
USING MODULAR RESIDUE TO MAKE A PUBLIC KEY
The cryptographic implications can be easily seen. For example, any
member of the first polygonal sequence can be transform to be a member
the second sequence and used for a public key:
_____________________________________________________________________
Page 3
p = prime 1
q = prime 2
N= p X q
M= message
C = Cipher_text
Encrypt (using polygonal sequence 1): (Sender knows N by not p and q.)
(M X M + M)/2 modulo N == C (The resolution of the formula for
polygonal sequence 1.)
Decrypt: (Receiver knows p and q.)
(C X 8 + 1) modulo N == ((M X 2 + 1) X (M X 2 + 1)) modulo N
This converts the triangular encryption into a member of the square
sequence and allows for solution. Solve for (M X 2 + 1) modulo p and
(M X 2 + 1) modulo q. Using Chinese remainder theory the results may
be used to produce four possible solutions. 1 is subtracted from the
four possible results and the results are divided by 2. Many methods
can be used to avoid ambiguity, but presumably only one of the four
possible M's will make sense.
A similar possibility exists for the use of the fourth or hexagon
sequence, because it may also be changed into a member of the square
sequence by (C X 8 = 1), but decryption is more complicated. The
resulting squares require the subtraction of 1 and division by 2 AND
THEN the additional step of adding 1 and the dividing by 2.
For conventional key purposes it should also be noted that the
vertical columns in the example contain all numbers from 0 to (N-1)
(the exception are the 1 column and the N column which are all 1 or 0)
and can be readily determined by their additive quality modulo N,
as suggested by the general formula.
To the best my knowledge, O. Joel Benston and myself are the
originators of the idea of using polygonal sequences (other than the
square sequence) for cryptographic purposes. We are considering
patenting the idea. If you have knowledge of other persons, who have
suggested a similar approach, please advise us. (501) 484-5489